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ON THE DEFINITION OF SURFACEPOTENTIALS FOR FINITE-DIFFERENCE
OPERATORS*

S. V. TSYNKOV t

Abstract. For a class of linear constant-coefficient finite-difference operators of the second order, we

introduce the concepts similar to those of conventional single- and double-layer potentials for differential

operators. The discrete potentials are defined completely independently of any notion related to the ap-

proximation of the continuous potentials on the grid. We rather use an approach based on differentiating,

and then inverting the differentiation of, a function with surface discontinuity of a particular kind, which

is the most general way of introducing surface potentials ill the theory of distributions. The resulting

finite-(tifference "surface" potentials appear to be solutions of the corresponding systeln of linear alget)raic

equations driven by special source terms. The properties of the discrete potentials in many respects resemble

those of the corresponding continuous potentials. Prilnarily, this pertains to the possibility of representing a

given solution to the homogeneous equation on the domain as a variety of surface potentials with the density

defined on the domain's lloundary. At the same time, the discrete surface potentials can be interpreted as one

specific realization of tile generalized p(ltentials of Calderon's type, and c(msequently, their approximation

properties can be studied independently in the framework of the difference potentials method by Ryaben'kii.

Tile motivation for introducing and analyzing the discrete surface potentials was tlrovided by the problems

of active shielding and control of sound, in which the aforementioned source terms that drive the potentials

are interpreted as the acoustic, control som'ces that cancel out tile unwanted noise on a predeternlined region

of interest.

Key words, linear differential ot)erator, discontinuous sohltion, distribution, monoI)ole, ditlole, fun-

damental solution, convolution, boundary integral, single- and double-layer potentials, surface density of

the potential, linear difference operator, multi-layer grid I)oundary, discontinuous grid function, discrete
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1. Introduction. For the systems of linear algebraic equations that originate from mesh discretizations

of elliptic differential operators, we define solutions of the special structure that may be considered immediate

discrete analogues of the continuous single- and double-layer potentials, i.e., surface potentials with the

monopole and dipole type density, respectively. Our definition reproduces, on the mesh level, tile following

general approach to introducing surface potentials of linear constant-coefficient differential operators that

is common in the theory of distributions. For a given domain of interest and its complement, and for a

given linear homogeneous differential equation, the potential is defined as its piece-wise smooth classical

solution that has, generally speaking, a discontinuity along the interface separating the domains. Applying

the corresponding differential operator to this sohltion throughout tile entire region of interest, we generate a
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particular collection of singular layers (&type distributions) along tile interface. Ill the case of second-order

differential operators, only the discontinuity in the function itself and its frst derivatives will matter, and the

corresponding singular layers on the interface will only be of the monopole and dipole type (i.e., &function

and its frst derivatives). Subsequently, the original piece-wise smooth solution on both subdomains can be

reconstructed its convolution of the resulting singular layers with the fundamental solution of the differential

operator (or any other Green's function if the overall region of interest is smaller than the entire space, and

some specific far-field boundary conditions are involved.) The resulting construction, i.e., the corresponding

collection of convolution-type boundary integrals, is often referred to as Calderon's (surface) potential [1], in

the particular fornmlation provided by Seeley [2]. This potential is a combination of a conventional single-

layer and double-layer potentials. The (vector-)function on the surface formed by the magnitudes of the

corresponding singular layers, is called the density of the potential.

In the classical potential theory for second-order differential operators, the single- and double-layer

potentials (driven by scalar densities) are typically introduced and studied independently, for the sake of

solving specific boundary-value problems, namely those of the Neumann and Dirichlet type, respectively. In

the foregoing general framework, the "pure '_ single- and double-layer potentials are obtained as particular

cases when the interface discontinuity has a special structure contimmus function and discontinuous

derivative I for the single layer (monopoles), and the other way around for the double layer (dipoles). This

allows one to represent a given solution to the tmmogeneous equation on the specified domain a_seither truly

a single-layer imtential, or only a double-layer potential, or, basically, any combination of the two. We note

that diff('rent representatitms of a given solution may have certain advantages with respect to one another

for the applications related, e.g., to active control of time-harmonic wave fields, as explained in Section 4.

In practice, to obtain tim density of the single=layer potential one will need to solve a complementary

problem of the Diri<:hlet type, and to obtain the density of the double-layer potential one will need to solve

a complememary prohlem of the Neumann type, see Section 2.

To implement similar considerations on the discrete level, we first need to introduce counterparts to the

differential operator and its inverse, i.e., convolution with the fundamental solution (or a Green's fimction).

This ix done as folh>ws. Given a large region, we first mesh it and choose an apprt)priate finite-difference

el)crater, and then select a far-field boundary condition at the outer boundary of the region st) that the

resulting finite-difference problem (a lin(,ar algebraic system) be uniquely solvable for any right-hand side.

Next, analogously to the continuous case we define the discrete potential as a pair of independent grid

flmctions, so that each one solves the linear homogeneous finite-difference equation with the operator that

we have chosen on one of the two t)redetermined subdomains of the overall region of interest. We emphasize

that even when the subdomains have irregular shape, we can still use regular grids, which is convenient (see

Section 3).

Applying the finite-difference operator to the aforementioned pair of solutions throughout the overall

region, we obviously generate a right-hand side on the grid. Specific values of this right-hand side, as

well as specific grid subsets, on which it will differ from zero, will be determined by the stencil of the

discrete operator and the behavior of each solution from the pair near the boundary that separates the

subdomains. In Section 3, we will see that the latter behavior can be conveniently categorized in terms of

"surface discontinuities" of the grid flmctions. As concerns the resulting right-hand side, for finite-difference

el)craters of the secon(l order it will always be defined on a two-layer "curvilinear" subset of grid nodes that

follows the geometry of the continuous interface. This right-hand side is called the density of the discrete

IThe direction (ff differentiation f()r the operators that we consider should be normal to the interface, see Section 2.



potemial. The potential itself is reconstructed by solving the foregoing finite-difference prol)lem driven by the

density. If, in so doing, we consider s()me sI)ecial (:lasses of surface discontinuities oil the grid, see Section 3,

then we can recover the (liscrete single-layer potential, for whi(:h the grid density is concentrated only on

one layer of nodes, and the discrete double-layer potential, for which the density can be represented as a

collection grid dipoles aligned with the coordinate directions and defined on a two-layer fringe of nodes.

The key result in the discrete fi'amework is that similarly to the continuous case, one can represent a given

solution of the homogeneous finite-difference equation as a variety of discrete surface potentials, including a

pure single-layer potential, a pure double-layer potential, as well as combinations of the two.

Let us emphasize that our definitions of discrete surface potentials are not related in any respect to the

notion of approximation of the continuous single- and double-layer potentials on the grid. Strictly speaking,

we introduce the potentials of finite-difference operators rather than approximations to the potentials of

differential operators. As such, our approach is flmdamentally different from the previous techni(lues that

have used mesh analogues of surface potentials, e.g., the method of capacitance matrices [3], in which specific

1)oundary conditions (of either Dirichlet or Neumann type) are tmilt into the construction of the grid t)otential

from the very beginning, using interpolations between the regular grid and irregular continuous boundary.

Nonetheless, the discrete potentials that we define here do approximate their continuous counterparts as well.

To this end, we need to mention that the roots of our approach can t)e found in the work t)y Ryaben'kii [4],

that has later developed into the difference potentials method (DPM), see [5,6]. It turns out that the discrete

surface potentials the way we introduce them in this paper can be considered a particular version of the

so-called generalized difference potentials of [5,6]. As such, one can establish the approximation properties

of the discrete surface potentials independently, using general apparatus of the DPM, see [5 7].

The motivation for defining surface potentials of finite-difference operators and analyzing their properties

comes from the problems of active control of time-harmonic wave fields, in particular, common environmental

noise, see, e.g., general reference [8], as well as our work [9, 10]. In this framework, densities of the discrete

surface potentials are conveniently interpreted as near-surface acoustic control sources that are employed to

cancel the adverse component of the overall acoustic field on a predetermined domain. In this perst)ective,

depending on a particular setting, either monopole or dipole sources may be preferential from the standpoint

of engineering implementation. Moreover, some of these source distributions may appear optimal with

respect to particular criteria, e.g., the overall acoustic power or integral volume velocity, see [10].

The rest of the paper is structured as follows. A sununary of results from the potential theory that

are relevant to our current study is provided in Section 2. Discrete counterparts to the continuous surface

potentials are introduced and analyzed in Section 3. Finally, in Section 4 we outline a mathematical fi'ame-

work for active noise control, and discuss some results in both continuous and discrete fornmlation, including

the connection between the two formulations, which relates to the approximation properties of the discrete

potentials.

2. Surface Potentials of Differential Operators. In this section, we adopt the framework of dis-

tributions as it will be convenient for introducing finite-difference analogues in Section 3. Further detail on

classical potentials can be found in, e.g., [11, 12].

Any second-order elliptic differential operator of the type

02u (2.1)Lu _- aij-- + ctt
i,j = l Oxj Ox i



on IR'_ can be reduced to the canonical form

£u = &u + cu, (2.2)

where _X is tile _t-dimensional Laplacian, by a non-degenerate linear transformation of the independent

variables x 9, j = 1 .... , n. Provided that tile coefficients aij ill (2.1) are constant, this transformation will

location,- i.e., will be and the for all x In this case, which is thenot depend on the spatial " " one same E N".

only case that we are going to study in this paper, we can effectively disregard the original form (2.1) and

consider the operator/; given by (2.2) from the very begimfing, assuming, if necessary, that the corresponding

transformation has already been applied. The coefficient c in (2.2) is also assumed constant; the case c

(where k > 0) corresponds to the Yukawa operator, the case c = 0 to the Laplace operator, and the case

c = k'-' to the Helntholtz operator. The dimension n of the space can be arbitrary, although front the

standpoint of applications it is interesting to study either i_ = 2 or 7_= 3. The finite-difference analysis in

Section 3 addresses primarily the c_e n = 2, for the reason of simplicity.

Let us introduce the domain f_ C IR" and its complement _11 = D\(_ to a larger domain D C R", which

may. in particular, coincide with the entire space IR". _ and _1 are the subdomains, and D is the overall

large region, that we have referred to in Section 1. We also introduce the boundary between the subdomains

and dentate it. F = OFt. To avoid possible uncertainties we will assume that the domain _ is bounded,

whereas its complement _l, along with D, may be either bounded or unbounded.

Next., we will need to introduce a special class of functions U defined on D, which will contain the

sohttions of the inhonlogeneous differential equation £u = f. The functions 'u t5 U are assumed locally

integrable on 11): U C LJl°¢'(ff)) (as such, ever}, u E U is a regular distribution), although later we will

restrict ourselves to an even more narrow set. of fimctions as solutions, nanmly, piece-wise smooth, so that

the operator L of (2.2) can be applied to u in the classical sense everywhere on II3 except, inaybe, at the

interface F. Tile functions u E U shall also satis_ some linear homogeneous boundary condition on the

outer boundary Oil) that would guarantee uniqueness of the solution, i.e., that the only solution of £u = 0

on ID, u E U, is trivial. We will sometimes refer to this bomldary condition that essentially defines the class

U as the far-field boundary condition. The choice of the Nr-field boundary condition is typically not unique

for a given setting. Its specifi¢' fot'm will in an)' event depend on the configuration of 1I])and the type of the

operator £ of (2.2). In this connection we emphasize that whereas for an)" particular application we may

need to consider the far-field boundary condition of an appropriate type deternfined t)y this application, for

the general analysis of the current section we only need to ensure the uniqueness, and as such, any far-field

boundary condition that provides it will be appropriate. For example, if _ = IR", then for tile Yukawa

equation we only have to require that the solution vanish at infinity for the Laplace equation it. either has

t.o be bounded or, again, vanish, depending on whether ,t = 2 or n > 2. and for the Hehnholtz equation

is has to satisfy the so-called Sommerfeld radiation boundary condition, see [11]. (For that, the flmetion

u E U has to possess additional regularity near Off), namely, it has to be at least Cl-smooth outside some

large sphere, see [12].) If II) is bounded, then, for example, the zero Dirichlet boundary condition at Off) will

be apt_ropriate, provided that in the Helmholtz case the domain II) is not resonant, i.e., that -k '2 is not an

eigenvalue of the Laplacian on g).

Let us first consider the untmunded case if) = IR". The flmdamental solution of the operator L (see,

2If there were first-order terms in (2.1) zuswell, they could have been eliminated by a slightly more elaborate transformation,

see [11], so that the canonical form will still remain as given by (2.2).



e.g.,[12])is asolution£ = E(x) to the inhomogcneous equation

LC = (f(x) (2.3)

that is defined on the entire space N" and belongs to tile corresponding (:lass U: g E U. For n = 3, the

fundamental solutions g E U of tile Yukawa, Laplace, and Hehnholtz operators are given by the expressions

e-klxl 1 e -ikl'rl

g(x)- 47rlxl, g(x)- 4_Tlx[, and £(x)=---_-lxt, (2.4)

respectively. For n = 2, the corresponding expressions for c ¢ 0 involve Bessel functions, and the flmdamental

solution of the Laplace operator is logarithnfic, see [11, 12].

For any distritmtion f such that the convolution E* f exists in U, this convolution gives a unique solution

u E U to the inhomogeneous equation Lu = f. Indeed, L(E. f) = Lg. * f = 5. f = f; and uniqueness follows

from the definition of class U. This, in particular, means that a given flmction u E U can be represented as

u = g * Lu, (2.5)

provided, again, that the convolution exists in U. Indeed, denoting f = Lu and assuming that. 3 g * f E U,

we conclude by the previous consideration, that this convolution, i.e., the right-hand side of (2.5), yields

a unique solution of the equation Lu = f in the class U as such. it has to coincide with u. _,_ also i|ote

that representation (2.5) is unique, i.e., if 3g such that U _ u = g * g, then it. has to be .q = Lu. Indeed,

subtracting the equality u = g. * g fi'oxn (2.5) we obtain g * (Lu - g) = 0 and then, applying the operator L

we haveL(g*(Lu-g)) = Lg*(Lu-g)=a*(Lu-g)=Lu-g=O.

We will now focus on a particular subset of functions u = u(x) E [' x E IR", nanlely:

Iv(x) for xE_

u(x) = [,.,(x) for x • _l
(2.6)

where Lv = 0 on [_ and Lw = 0 on 1_1. In other words, u(x) is composed of two independent branches

v(x) and w(x), such that v(x) solves the homogeneous equation on the domain F/, and w(x) solves the

homogeneous equation on its complement [_1 and satisfies the at)prot)riate far-field boundary condition. On

the interface F the function u(x) is, generally speaking, discontinuous.

It is clear that the application of the operator L of (2.2) to the function u of (2.6) yields a singular

distribution with the support on the interface F only: supp Lu C_ F. Specifically, let (_l, ¢) denote the linear

functional associated with a given distritmtion u, here 0 is a test function. Then, differentiating _l of (2.6)

once in the sense of distributions, we obtain

(V_'' O)------(_/" _" 0)=- _ n u(x)V_)(x)(/x : - _' v(x)_'7(_I(x)dx - _ 1 U'(X)_-7/(_)(x)dx

JR JF

where dx and do c,orrespond to the volume and surface

pointing toward [_l, {Vu(x)} denotes the regular part. of

integration, respectively, n is a unit normal to F

the gradient calculated in the classical sense where



is exists,i.e.,on f/t2 ftl, and[u]r standsfor thediscontinuityof theflmctionu(x) across the interface:

[u]r(x) = lim,,_ w(x') - lim,,,__, v(x"), where x E F, x' E f_j, and x" E f_. In other words, we have

Vu = {Vu(x)} + [u]rn_(r). (2.7)

For every coordinate direction x j, j = 1,... ,n, the second term on the right-hand side of (2.7) is a single

layer on tile surface F with the magnitude [u]r (x)nj (x), x E F. Let us now apply the divergence operator to

both sides of equality (2.7), and when differentiating the function {Vu(x)}, which is possibly discontinuous

across F, implement tile same rules and notations as before. This yields:

Au = {Au} + ([Vu]r, n)6(r) + (V, ['a]vn_(r)), (2.8)

where ( -, • ) denotes a standard dot product of n-dimensional vectors. The second and third terms on the

right-hand side of equality (2.8) can be rewritten using conventional definitions of differential operators in

the space of distributions:

(([v,,], = f, ((v,,,,-I-

0,,) [0.] (ro, l )\On _n Oda= _ r On r Oda= [OnJr _(F)'o '

where normal derivatives _"' o,,and _ on F shall be understood as unitbrm limits from the side of ftl and _,

respectively, provided F is sufficiently smooth, aim

((v, [u]r _(r)), O) = - [_,],,,,j_(r), 00 = - [_]r,_ a_
j=l j=l

=-jfr[u]r(_70, n)da=-._,[u]rO0 (£ ([,u]],(_(F)), 0)_nnda = .

Altogether, from equality (2.8) we ol)tain

[Ou] 6(F) + £([u]rS(F)). (2.9)

The second term on the right-hand side of (2.9) is a single layer on the surface F with the magnitude

[-_nU]r (x), x C F, and the third term on the right-hand side of (2.9) is a double layer on the surface F with

the magnitude [u]r(x), x C F. Finally, for the operator £ of (2.2) we have

[Ou]
d(F) + £([u]rd(F)), (2.10)/'u = LOnnJr"

because the zeroth-order term cu contributes only to the. regular part, and {Lu} = O.

The right-hand side of expression (2.10) is compactly supported; consequently, its convolution with the

fundamental solution g exists in the sense of distributions. Moreover, it can be shown that this convolution

does belong to the class U (see [11, 12]), i.e., satisfies the far-field boundary condition at infinity that is

appropriate tbr every particular type of operator (2.2). As such, we can use formula (2.5) and obtain

;( [j0 )(y) -[u]v(y)_n(X - y) da_. (2.11)= E(z- y) _ r

The integral on the right-hand side of (2.11) reconstructs the original flmction u(x), i.e., it coincides with

v(x) for x E _ and with w(x) for x E _1- This integral is called the sur]ace potential, and it has two



components asingle-layerpotentialanda double-layerpotential.Hereafter,wewill, forsimplicity,refer
[@),rto the vector function t L_nnJF ' on the interface F as to the density of the potential. We reiterate,

however, that the actual density, of tile potential is a singular distribution Lb-_J[0, ] 5(F) + 757,([a]5(F))0 wittl the

support on F, which, by its nature, is a right-hand side to the differential equation ttlat we study.

We see that the density of the potential is fiflly determined by the discontinuity of tile function u of

(2.6) itself and its normal derivative. This is a key consideration in our analysis, nanlely that the behavior

of a piece-wise smooth solution to the homogeneous equation is completely controlled by the location and

type oi discontinuities that it has. A sinlilar consideration will be employed in Section 3, when discussing

the discrete formulation. W_ also notice that when w(x) - O, x C tli, then formula (2.11) reduces to the

standard Green's formula that recovers tile solution u of tile homogeneous equation Lit = 0 on the donlain

ttlrougil its vahles on tile boundary P. Reciprocally, if v(x) - 0, x Eft, then (2.11) l)ecomes the Green's

formula for the eomplenlent domain _1.

/.From the definition (2.11) one can see that changing the flmction w(x) on the domain t_l does not

change the values of the potential ell the domain _. As such, the following natm'al question arises: Given a

fixed flmction v(x), Lv = 0, x C Q, describe all its possible rel)resentations on l_ in the form of the t)otential

v= Sr (F(x_y)_o(y)-_l(y)_n(X-y)) des_, (2.12)

where _0 and _1 are scalar densities defined on the boundary F. The answer to this question is given by

PROPOSITION 2.1. Surface integral (2.12) coincides with the given function v(x), L_.... O, on the domain

t_, if and only if (o = o_, o_, and(1 = w - I' on F, where w(x) is some solution to the equation Lw =00 n 0 n

that is defined on f_l and satisfies the corresponding far-field boundary condition.

In other words, by considering tim entire variety of appropriate auxiliary functions w(x), x E l_l, we

el)rain all possible representations of the given v(x), x E _, in the form of the potential (2.12).

Proof. One implication has already t)een established, nanlely, we have constructed tile potential (2.11)

so that it reconstructs the given v for any w, Lw = 0 on fll. Conversely, assuIno that v is represented by

formula (2.12) on 17. We need to show that there is a fun(:tion w that solves equation Lw = 0 on _11, satisfies

the far-field boundary condition, and such that _l and _0 will be discontinuities l)etween w and v on tim

surface F; more precisely (1 will be discontinuity of the function itself, and ([) will be discontinuity of the

hernial derivative. Consider tile standard Green's formula for v(x), x E iL

ov o<v = - y) (y) + -

and subtract it from the general representation (2.12). The result will be identically equal to zero on iL Oil

the complementary domain t_l, the resulting fluiction

W ----- _(X -- y) _0(Y) "l- (y) -- (_1 (_#) "4- ?2(y))_--_n (X -- y) d_y (2.13)

satisfies L'w = 0 because the source ternls are concentrated only on F. The far-field I)oundary condition can

again lie verified directly for ever), specific case (Yukawa, Laplace, Helmholtz) by analyzing properties of

the integrals, [11,12]. Consequently, the foregoing general argument on rel)resenting a given flmction in the

form (2.5), or more precisely (2.11), can t)e applied to tile function that is identically e(lual t.o zero on _ and

<_" -- ¢J"' and (1 + is = w on F. rlequal to w of (2.13) on fli, which allows us to eonchide that (0 + _ -

As Proposition 2.1 describes the entire variety of representations for v in the form of a boundary potential,

one can easily identify some important special cases. For exainple, we can represent v(x), x C tl, as a single-

layer potential only. To do ttiat, we need to find w(x), x E fli, such that tile overall function u(x) of (2.6)



will havetilediscontinuityonlyin its normalderivative,andnot in thefunctionitself.Thisw(x) will be a

solution of tile folk)wing external Dirichlet problem:

Lu, = 0, m G f_l, (2.14)

"']r = "[r, _, E U,

where the inclusion w E U simply means that w has to satisfy the appropriate far-field boundary condition.

Problem (2.14) is always uniquely solvable on f_l = R _ \[_. Similarly, v(m), m q ft, can be represented as a

double-layer potential only. In this case, tile function w(x), x q ftl_ has to be such that u(x) given by (2.6)

will have discontinuity only in the function itself, and not in the derivative. This function w(x) shall solve

tile fifllowing external Neumann problem:

Lw=0, x E ftt,

(2.15)
Ow Ou [ w E U.
On r = O--nnIv'

\Ve note that the additional necessary Solvability condition of zero total flux through the interface that needs

to be imposed for the two-dimensional Laplace equation in problem (2.15) is satisfied because the boundary

data themselves come from tile harmonic function on ft. Of course, besides the two "polar" cases of a

pure single-layer potential aim tmre double-layer potential, the function v(m) on ft can be represented as a

variety {ff combinations of the two potentials, see Proposition 2.1. As described in Section 4 below, different

representations of a given field 'e in the form of a surface potential may exhibit different, properties in the

framework of active control of sound.

Let us also note that the argument used when proving Proposition 2.1 provides for another useful way

of looking at the properties of surface potentials. Consider an arbitrary pair of functions (0 and _1 on r and

introduce _ =  06(r) + ((l(f(F)). Then the t)otential with the density .... ( is given t)v u = a. _, or bv the

integral on the right-hand side of (2.12). Obviously, it satisfies the equation Lu = (, and one can also show

that 'u E U. Then, (o ou= [g'_-,] r and _ = [u]r. If we now denote v(z) = u(z)IzE_l and w(x) = u(x)],e_, as

in (2.6), then we e(melude that for a given ( on F the potential g" * _ renders tile de('omposition of _ into a

part (_m, ,-vJr) 7'0, r that can be extended to _ so that the extensk)n v(x) satisfies Lv = 0 on Dr, and the

remaining part (_ J,,, WIF)T that can be extended to ftl so that the extension w(x) satisfies Lw = 0 on _'_1.

In the framework of the Hehnholtz equation the meaning of the field v is the incoming wave with respect to

the domain li, because Lv = 0 on ft, and as such v can be attributed to some (unknown) sources outside l_,

i.e., on l_l. Reciprocally, w shall be understood as the outgoing wave with respect ta ft. We therefore can

say that for a given _lr that consists of the traces of both incoming and outgoing waves, the potential g •

automatically reconstructs only the incoming part of the field on the domain ft and only the outgoing part

of the field on the (tomain f_l. This capability is important for active noise control, as explained in Section 4.

To conclude this section we should only notice that tile case of a bounded domain ID (:an be analyzed

similarly. Instead of the fundamental solution g. we will need to use the Green's function G that satisfies

a specific far-field boundary condition on 011) (for example, the zero Dirichlet boundary condition). The

Green's function is a function of two (n-dimensional) variables x and y, G = G(x, y); it. is defined as

G(x, y) = -g(x - y) + ,_(x, y), Vy e t17: _G(x, y) E U, (2.16)

where Vy E I13 : £_,_(x, y) = 0, x E D. In other words, the Green's function is obtained by adding to

-g(x - y) another function A(x, y), which is a solution to the homogeneous equation with respect to the

variable x on D, and such that the sum satisfies the boundary condition on 0D with respect to x for any y.



When one uses the Green's function, tile expressions for surface potentials ill the form of t)oundary integrals

remain the same as before with only -cC(x - y) rei)laced by _(x, y); and the result of Proposition 2.1 also

holds. Of course, ill this case one needs to renlenlber that every time a flmction w on _1 is considered that

satisfies tile far-field boundary condition, this boundary condition is a boundary condition at. 0D rather than

at infinity. As far as uniqueness of the solution for problems (2.14) and (2.15) in the new space U, it follows

from the maximum principle for the Yukawa and Laplace equations, and for the Hehnholtz equation we need

to assume that tile complementary domain [_ is not resonant.

The use of the Green's fimetion _ of (2.16) as an alternative to the flmdainental sohltion £. allows

one to take into account specific boundary conditions on (gD, in case this is imtlortant. As concerns the

representation of v(x) on f_ in the form of a surface potential, replacing cc by G does not change the results

in any respect. Consequently, one can use a specific Green's function instead of the flmdamental solution

not only when it is necessary, but also when it is convenient. In particular, in tile following Section 3, when

discussing the discrete formulation, we adopt the frainework of a finite domain D with the zero Dirichlet

boundary condition on its boundary 0D.

3. Surface Potentials of Finite-Difference Operators. Let us introduce a discrete grid N on the

domain D. For simplicity we can assmne that D is a large rectangle aligned with tile Cartesian coordinate

directions, and N is a regular square-('ell grid with the size h. We will denote by u (h), v (h), etc., the

discrete flmctions oi1 the grid N. Having constru(;ted the grid and defined tile grid flmetions, we discretize

the differential operator L of (2.2) and denote its discrete counterpart by L (h). In this paper, we use

finite differences to eonstruct discretizations, and (:onsider only second-order finite-difference operators. The

simplest of the latter involves standard (:entral differences for the Laplacian, and in ttl(_ tw(l-dimensional case

is built oil the symmetric five-node sten(:il:

u(h) (',) (,,) {,,) _4u(h)
L(h)u(h) i+l,j + _i-l,j + _li,j+l + Ui,j--1 . (h)= -_ CU, j. (3.1)

i,j h2 '

We emphasize that in general we can consider more coml)lex grids and domains, as well as more Sol)histicated

diseretizations, but for the purpose of denionstrating the concept, hereafter we rather adhere to tile most

straightforward constructions, namely, a uniform Cartesian grid on a rectangle D and the central-difference

discretization (3.1). Moreover, the at)paratus that we develop in this paper, as well as the general apparatus

of difference potentials [4 7], provide a viable nteans for dealing with comt)lex geometries on regular grids.

As such, the discrete formulations that we analyze in this section should not be regarded as model examt)les

only, but rather as an outline of the direct finite-difference approach to analyzing the applied prot)lenls (see

Section 4 for more detail).

Similarly to the contiImous case, tile operator L (h) needs to be supplemented by tile far-field boundary

condition on (9ID. It is natural to assume that tile outerinost collection of nodes of the grid N beh)ngs to tile

rectangular I)erimeter 0lD. Then, imt)osing, for example, a zero Diri('hlet boundary condition is easy. If we

choose a generic notation n for the nodes of tile grid 1N (n, in fact, is a pair of indexes (i, j)), then we simtlly

say that

u_,h) = 0 for all 7_E {N I-I 0ID}. (3.2)

In general, we define the space of grid functions U (h) as all those and only those flmctions on N that satisfy

the discrete boundary condition on 0Ill that we have selected.

Besides tile grid N and the space of flmetions U (h) defined on it, we will also need to introduce the grid,

oil which the residuals of the operator L (t,) of (3.1) are defined. Subsequently, the discrete right-hand sides



oftile inhomogeneousfinite-differenceequationwillbeconsideredonthisgrid.Wewill callthisnewgridNI,
andthegeneric:notationforits nodeswill bem (m isalsoa pairof indexes).Thestructureof thestencil
ofL (h),see(3.1),impliesthat m E l_ifand only if3n E N: n _0D andre =n. In other words, h)r our

simt)le tbrmulation the grid M can be obtained from N by throwing away the outermost nodes of N that

belong to 0D. V_ assume that: for any discrete right-hand side f(h) _(J,). = am , m E NI, the inhomogeneous

tinite-difference equation LIh)u {_1 = flhl is uniquely solvable in the class U <h). If the <:lass U Ih) is defined by

the zero Dirichlel boundary condition (3.2) (this case is our primary example), then the unique solvability

for the Yukawa and Laplace equations follows from the maximum principle. As for the Helmholtz equation,

we need to additionally assume that the domain is not resonant, as we did in the continuous case. The

ah)rementioned unique solvability allows us to introduce the inverse operator to L/hI. We will denote it. G/h 1

so that for a given discrete right-hand side f¢h) = f_,_,), m E M, the solution U {hI _ u !hl = ul_'), n E N,

of the finite-difference boundary-value problem on N is given by u Ih) = G(hlf Ih). The operator G (h) is a

finite-difference analogue of the convolution with the Green's function {_ described in Section 2.

Let us now introduce a special notation for the stencil of the difference operator L Ihi of (3.1). For

m = (i,j,) the stencil N,,, centered at m E NI consists of the five nodes of the grid hi: N,,, = {(i,j), (i +

1,j),(i - 1,j), (i,j + 1), (i,j - 1)}. Next, in accordance with the partition of domain lI} into _1 and its

comlflement [_l, we define the corresponding subsets of the previously constructed grids:

N+= eUv_ N,,,, N-= U Nm,*n *n E M
(3.3)

7=N+NN -, _+=N-N_L 2_- N+Nfil

We emphasize, that the grid IV_ that pertains to the right-hand side of the finite.-difference equation is

partitioned into 1V/I+ and NI- directly, i.e., following the partition of D. In contradistinction to that, the grid

N is nol partitioned directly, we rather consider the collection of all nodes of N swept by the stencil Nm when

its center belongs t.o M+ , and call this sub-grid N +, see (3.3). Obviously, some of the nodes of N+ obtained

this way are outside _, i.e., in ill, and these nodes are called 7-- The sets N- and 7 + are defined in a

similar way starting from NI-. The key idea is that whereas the grids NI+ and NI- do not overlap, the grids

N + and N do overlap, and their overlap is denoted 7; obviously, 9 = 7 + U)-. The subset of grid nodes 7

is <:ailed the grid boundary, it. is a two-layer fringe of nodes a that. is located near the continuous boundary F

and in some sense straddles it. The geometry of the domains and the grid boundary is schematically shown

in Figure 3.1.

Next, we consider a grid function u (h) = u,,-It,) E U (hI

f,,;,"' for ,, e N +

/ (,,) ' (3.4a)
(w,, for 7, EN-

where £u,1 v t,/ = 0 on I_ + and L(h)w (hI = 0 Oil ['_-. Similarly to the continuous case, see (2.6), the function

u Ih/ of (3.43) is composed of two independent branches on N + and N-, so that each of them solves the

homogeneous finite-difference equation on the corresponding sub-grid NI+ or NI-, respectively. On the grid

boundary 2, the function u (h} is defined as double-valued. The notion u (hI E U Ihl only means that w (hl

satisfies the far-field boundary condition that we have chosen, e.g., (3.2).

3For more elaborate stencils it may be a "thicker" muRMayer fringe,
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FI(;. 3.1. Schematic geometry of the domains and the grid boundary: hollow bullets ")+, solid bullets -- ")-.

Along with considering the function tl (h) of (3.4a), we will also need to eliminate the "ambiguity" in its

definition on 7 and introduce fi(h) -(h) u(h)Itn E

I,,h) for 7t ¢ N+\') '- (a.4b)

tu,,, for 71,E N-\'T +

where i) (h) and 7 (h) are again solutions of the homogeneous finite-difference equation, lint considered on

smaller grid subsets; namely, I,(hlg '(hI = 0 on 1MI+ \7 + and LIJ')U_ (h) = 0 on NI-\7 • The function .&(h) of

(3.4b) is uniquely defined everywhere. V<e emphasize though, that formula (3.4b) defines a class of functions

which is wider in some sense than that defined by (3.4a). Indeed, every flmction u (h) of (3.4a) can be

reduced to the corresponding '_(h) of (3.4b) simply by means of truncation; however, given a flmction _-,(h) of

(3.4b) we will not necessarily always be able to extend its branches ,_(h) and ff:(hl fl'om N+ \')- and N- \3+,

respectively, to N+ and N-, respectively, so that the extensions satisfy the homogeneous equation in the

same sense as the branches of u Ij') do. This is easy to see already' from the following simple exaniple. Assume

that we have a solution to the homogeneous difference Laplace equation that we want to extend from N- \')+

to N-. Even if this particular extension does exist, we cannot, generally speaking, continue extending it

further and further "inwards." Otherwise, we will eventually end up with a solution to the homogeneous

equation on the entire grid N that satisfies boundary condition (3.2), which will either violate the uniqueness

(or maximum principle) or should be trivial.

The single-valued function fi(h) of (3.4b) will be needed mostly for "technical" purposes, namely, to first

apply the finite-difference operator/)(h) and then use the inverse operator G (h) which altogether will allow

us to define grid analogues of continuous surface potentials. As for the function u (h) of (3.4a), its double-
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valued prot)erty oil 7 can be conveniently termed as "discontinuity" of the grid function on the grid boundary

7- Ill this perspective, the flmction u (t_) of (3.4a) will allow us to analyze various kinds of such discontinuities

and accordingly identify different types of discrete surface potentials, in particular, the single-layer potential

and the double-layer potential.

Apt)lying the operator L (h) of (3.1) to the grid function 'h(h) of (3.4b), we produce the right-hand side on

the grid. By construction, this right-hand side may only be concentrated on the grid boundary 7. Indeed,

consider, fur example, the interior sub-grid M +. For every m E M + such that Nm N 2_- = q), we obviously

have L(h)'h (t_) m = 0, because for all such _n's clearly L(hib (h) m =- L(h)_ '(h) ,n_"and _!h) is a solution of the

homogeneous equation on I91I+\7 +. Consequently, the only nodes m G l_II+, fur which L(h)fi (h) ,, may differ

from zero, are those that satisfy N,,_ 717- _ q)- By construction of the grid sets (see Figure 3.1), these are

the nodes ?+. Reciprocally, the only nodes nt E l_-, for which L(h)fi (hI may differ from zero, are those

that satisfy Nm N "?+ ¢ 0, and these are the nodes "_-. Altogether, we can write

L(h).fi(h) = f_/,I where V'_'_'t E M\'_' : flih). = 0. (3.5)

Next, applying the inverse operator G (h) to the grid right-hand side/_t,) of (3.5), we obviously restore

the original fimction _(t_) on N (due to the aforementioned unique solvability of the discrete problem):

h(h)= G(ht f_ h). (3.6)

We will call the representation of '5(h) in the fi)rm (3.6), where the source term f(h) is concentrated only on

the grid boundary "), the discrete surface potential with the density f(h). Similarly to the continuous case,

see formula (2.1 1) and suhsequent discussion, the density of the potential by its nature is the right-hand side

to tile equation.

Now ill the discrete framework, we are ready to fornmlate a question similar to that previously addressed

by Propositioil 2.1 in the continuous case. Namely, for a given flmction f_(h) on N+\7 -, Lth)g '(h) = 0 on

[_+ \'):+, describe all its possible representations in the form (3.6), where again, the source terms can only

differ from zero on the gird boundary 7- Tile answer to this question is given t)y

PROPOSITION 3.1. Expression (3.6), where suppf_ h) -- % coincides with the given function o(h),

Lth_ '(f'_ = O, on the grid N+\_ -, if and only if ]_t_l = Lit_)hlhl, wh,ere _lt_l is composed of f,ts,l and @lh)

accordin 9 to definition (3.4b), and _b(t*l is a 9rid function on N-\'),+ that satisfies the equation L(h)_b (h) = 0

on M-\*f- and the selected far-field boundary condition, e.g., (3.2).

Proof. One implication has already been shown, namely that for any given b (h) and arbitrary _b(_),

the potential (3.6) with the density f_h) obtained through (3.5) will reconstruct the original b (h) on N+ \7-.

¢(h) _i+\_- ' "Conversely, assume that there is f_h) on _ such that a_ = 0 on Mk_t, and G(_)f_ h) = _(h). Consider

_(_) {;}') f°r n_l_+\_ -
.. = (3.7)

fur n6N-\_+

and (te_ine fish) = t(h)_(h) ; clearly, .q_h) = 0 on i_\_. Let ,b (t') = G (h) (f_h) - g(h)). Because of (3.7), we

s+\_- - = ¢(_) and 9(__) may only (lifter from zerohave 'ff_(_ ) -- 0. Moreover, L (h I@(_ ) 0 oil _- \_- since both a_

on 7. Finally, d, (h) satisfies the far-field boundary condition by construction. If we now assemble fi(h) of 0 (h)

and d, (t') according to (3.4b), then it is easy to see that /i (_) = fi(t') + _b(h) on the entire N. Consequently,

L(h)r" (h) = L h)_l h).__ L(h} G(h)(f{h)(/,)) = (h) Av f(,,),_h) = f("). [7

t2



i.Fronl Proposition 3.1 we can conclude that by varying tile auxiliary function @(h) on N- \7 + we obtain

all possible representations of the given f,(h) on iN+ \7- in the ff)rm (3.6), where supp f_t,) = _.

Let us now return to the more narrow (:lass of functions _(h) defined by (3.4a); these flmctions are double-

valued on % First of all, using Proposition 3.1 we can easily see that for a given fllnction v II'_ defined on

N + such that L(h)'v (h) = 0 on 1_ + , its truncated portion v (h) ]n÷\_- can be represented as a discrete surface

potential (3.6) with the density f_n) concentrated on 7, and all such representations are paraineterized by

the flmction u '(h) defined on N-\7 +. Formally, we can say that the entire v (h) on iN+ is represented as a

discrete surface potential; for that, we only need to supplement G(t')f_ h) N÷\_- with the values v (hI [_ that

are known. Next, we reeall that w (h) of (3.4a) is, in fact, defined on N-. This will allow us to analyze the

structure of the right-hand side f_h) of (3.5), i.e., the density of the potential.

I I
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I
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FIG. 3.2. Schematic ]or a fragment o/ the grid boundary: hollow bullets -- "_+, solid bullets "7-.

Consider a fragment of the grid boundary schematically shown on Figure 3.2 and take an art)itrary node,

say, node b. If we now denote the truncated functions: ,_,(h) = v(h)IN+\_- and _,(h) = wth)]N-\_++' and have

5 (h) defined according to (3.4b), then we obviously ot)tain

/+'>b= v"',?") -- v_)v'> _ w_'>-t,'+'+/')+ ,,,I."'-h.vl'>

0 (a.s)
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Similarly, fi)r the neighboring node c we have

[,w_h_ _ v_h) u,}.hl _ ,W_h)] r Ihl (hi-_ _ _ [Wc -- V d

h 2
(3.9)

LFrom formulae (3.8) and (3.9) we first conclude, that for ever)" given node from 7, the value of f(hl at

this node gets contributions from those and only those neighboring nodes that are (m tile other side of

the continuous interfa(:e F. More precisely, if m E _+. then the value of ](h) ,,,, , =, will he affected by the

values of v (h) and w Ih) at those and only those nodes of 3_-, for which N,, O 2- ¢ 0, as well as by v(h)l,.

itself. Reciprocally, if m E ?-, then the value of f(h) ,, will be affected by the values of w (h) and v Ih) at

those and only those nodes of "_+, for which N,n gl 7+ ¢ q), as well as by w (h)[,. itself. In other words,

the inhomogeneity is generated when the finite-difference stencil spans a(:ross two different solutions of tile

lmmogeneous equation. It is generated only on _' because everywhere else on the grid the stencil applies to

one hranch of 5(h) either _5(j'_ or 'd_(h), and does not touch the other one. In this sense, it will be convenient

to say that the discrete fimction .fi(h) of (3.4b) is "discontinuous" on the grid boundary 3'. And the douhle-

vahmd property of its parent function u Ih) on _' (see (3.4a) will, in fact, help us identify different types of

such discontinuities.

To do that let us first consider the segment of the grid line between the nodes b and c, see Figure 3.2.

Looking at formulae (3.8) and (3.9), one can say that this segment contributes hoth to the value of f_h) b

h) c" }h) b
and to that of f_ Indeed, the eontrit)ution of the segment [b, c] to f,_ is

(hi lh)

f_(h) b_[b_c])'" = .['"!'h) :_b][2 Vc -- Y_ h)

[ h')
(3.10)

and the contribution of the segment [b, c] to f_ht ,. is

z(,,, [w? 4"'
" L h'-'

(3.11)

To obtain the full value of f_/_) b one obviously needs to add up the contributions from all segments that

originate ill b and intersect F, i.e., f(_h) b , b([, h) b([b,a])" r(h) c is= f(h) b el) + f_ Similarly, the full value of j_

• f_.) f(h) ([b, f(h)given hv all segments that originate in c and intersect F, i.e., . = el) + _ (.([d' el), and the
same is. of course, true for every node from 7- This is just another way to say that for a given node in %

the value of f(h) is affected by the neighhoring nodes on the other side of the interface. Alternatively, one

can say that all those and only those grid segments that have one endpoint in 7 + and the other one in 7-

contribute toward the values of the right-hand side f(h).

For a given grid segment of the foregoing type (i.e., with one endpoint in ?'+ and the other one in 3'-),

say, segment [b,c], it nmy happen, in particular, that f_h)([b,c]) = _f(h)b([b,c])" Fornmlae (3.10) and

(3.11) show that a necessary and suttieient condition for this is given hy the equality

hV_h)(v) = v_ ')- v_"' w_h) 'w;h) 1V(h,(w ,h:_ - _2 -_ _ b._ 'J" (3.12)

In other words, if we have a grid segment with tile endpoints on different sides of F, and if we want the

contrihutions of this segment toward the values of r(h)j_ at both endpoints t)e equal in magnitude and have
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opposite sign, then we have to require that the difference quotients V_h.l(v) and V_)(w) of the original

functions v Iht and w Ih/ along this segment, be equal, V_J'.)(v) w(h)' ,' V (hI= v_,. U_,) = ._,_ , see formula (3.12). In this

case, it is natural to associate with the segment [b,c] a discrete dipole with the moment qb_:

Ih) frill_ v (hI

For the particularexample that we have analyzed, the dipoleq_.,of (3.13)isalignedwith the Cartesian

direction x, see Figure 3.2. Obviously, the construction of a dipole aligned with the direction y wouht have

been the same.

Assume now that for every segment with endpoints in _+ and 7- the corresponding difference quotients

of v Ih) and w (hI are equal. In other words,

V (nl,n2) such that n 1 E ")'+, 112 E 7-- NNn, :

(3.14)

h--,q,,,, , = 1,_ - _ = h_,,,,,._, ,

Then, we can associate a pure discrete dipole with every such segment [nt, 7_._]:

=l,. ,, ([n,,,,.,])_ =-2 w,,, fi-'"" , (3.15),t,,| ,,:z

rr(h) _.--(h)where \',,,,,. = v,,, ,,,_,(v) = VI:',{,, (w). Moreover, in this case we can formally restore the actual nodal yah,as

of fjh} ti'oln dipole monmnts by the formulae

1

v,ne-,+:
n2(:_-nH_]

(3.16)

V n.2 E _-: f_h) = Z 1
,,2 211 q"_"'"

_1 E?-FfqNn2

Thus, we can giw' the following

DEHNITION 3.1. If the/unctions v (ht and w th! of (3.da) satisfy boundary, conditions (3.1_), while the

function _(h) of (3._b) is obtained simply from the truncated components: #(hi = v(h/l_4+\_ - and ff,(h) =

w(h) IN-\_+, then the corresponding f_h) of (3.5) is called the density of the discrete double-layer potential,

and expression (3. 6) defines the discrete double-layer potential itself.

As we have seen, once the boundary conditions (3.14) hoht we can equivalently re-define the density

of the discrete double-layer potential through a collection of dipoles qn,n2 on the grid boundary 7. These

dipoles (3.15) are associated with the grid segments that have one endpoint in "?+ and the other one in 7-.

In contradistinction to the continuous case of Section 2, in which the orientation of the dipole layer was

normal to the boundary F, here we work on a specific grid, and the discrete dipoles are aligned with the

Cartesian coordinate directions. The point-wise values of the potential density can be reconstructed from

the dipole moments using formulae (3.16). Let us also note that hereafter it is important to maintain that

nl C 7 + is the interior endpoint, and n2 E 9- is the exterior endpoint of a given segment [?tl, 112] ; this way

one can easily verify that all the difference quotients that we are considering, see formulae (3.14) (3.16), will

always be taken with the correct sign, no matter whether it is actually a forward difference or a backward

difference in every particular instance.
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Definition 3.1 is a natural finite-difference analogue to the notion of the continuous double-layer potential

introduced in Section 2. hldeed, a pure continuous double-layer potential is defined by the discontinuity [u]r

in the fimction itself, and not in its derivative. Accordingly, boundary conditions (3.14) that Definition 3.1

hinges upon essentially say that there is no derivative-type discontinuity in the grid function ,a (h) on the grid

boundary h' because the first difference quotients on all segments from 7 are equal from both sides. On the

other hand, conditions (3.14) do allow, generally speaking, for a discontinuity of the function itself, and this

is what may generate a non-trivial density of the potential in this case.

LEMMA 3.2. Any v ¢h) defined on N+ such that L(hlv (hI : 0 on I_/_+ , where L ud is the operator of (,7.1)

with c < O, i.e, either a Yukawa or Laplace operator, can be rep_vsented in the form of a disc_vte double-layer

potential.

Proof. What we essentially need to show is that for any v (hI that meets the requirements of the Lemma,

there will always be a flmction w (hI on N- that solves tile homogeneous equation Lth)'llr (h} = 0 Oil 1_-, an(1

satisfies the far-fieht boundary condition (3.2) and boundary conditions (3.14) on "r- The probleln of finding

the appropriate fimction w (h) on N- can be called a discrete exterior problein of Neumann's type, becmlse

boundary conditions (3.14) are fornmlated for the first, difference quotients. In this sense, this problem is

analogous to tile continuous problem (2.15) that needs to be solved ii1 order to i'el)resent a continuous v(x)

on _ in the form of a double-layer potential.

To show that the discrete problem for w Ihl on N- is always uniquely solvable, we will consider the

correst)onding holnogeneous prot)lem

/;(h)wlh) = 0 on IV]f,

v (,1,,,_._,),_., E _, _ E ",.+n N,., : w}/;I -,u, (_')= o,
- _ _ II I

(3.17)

and t)rove that its only solution is trivial. First of all, it is easy to see that tile number of equations and

the number of unknowns in problem (3.17) are the salne; they are equal to the number of nodes of the

grid lyli . Next, to show that the system is non-singular, we are going to employ a maximum principle

argument. Assume that there is a non-trivial solution w (h) to problein (3.17) on the grid N- and denote

ff,(h) = wft,)[_,__\_+. The truncated flmction 'd:(t') can reach neither its positive maximum nor its negative

minimum at ans' interior point of the grid, on which it is defined, i.e., at any node from NI \3'-. We will

prove the ca.se of a positive maxinmm, the other case (:an be analyzed similarly. Take some m E NI- \?-

such that 3 t_ E N,,, \{m} : ff,(h)],, < ,b(h)I,,' Obviously, if no such m exists, then the value of the function

"gi,(t'l is constant on tile entire grid, and because of tile far-field boundary condition (3.2) this constant is

equal t() zero. Oil the other hand, having found such a node m E M- \-y- with positive maxinmm, we apply

tile operator L (hI to the function d, (h) at this node and immediately see that the result can only be negative,

Llh)(['{h) ]m < 0, which contradicts one of our previous assumptions, see (3.17). Consequently, d ,tIll may only

reach its positive maxilnmn on the t)oundary ";¢-, and moreover, if _b(h) _ const, and m E "7- is one of the

boundary nodes at which the iuaximum is reached, then Vn E N,,, Cl {NI-\-'/- } is has to be ff,(h)1,, < ff,(h)[,,.

(Otherwise, it. will be an interior node with the maximum value.) Calculating the value of L(h)d_'(h)[,_, we

ot)tain zero contrit)utions from all those segments of tile stencil N,,, that have the other endpoint (besides m

itself) in ?'+ because of the t)oundary condition on 7 in (3.17); we may obtain zero or negative contributions
~(h)

from all those segments (if any) that have the other endt)oint in 7- because w,, is a maxinmm; and the

contributions from all tile segments with the other endpoint in NI-\?- will be negative. As such we again

arrive at. a contradiction: L(h)d, (h) I,,, < (), which proves the Lemina. 0

To prove tile result similar to that of Lemma 3.2 for the Hehnholtz equation, one actually needs to
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assumethat thecorrespondingexteriorNeumann-typeproblemis solvable(i.e.,therearenoresonancesof
thecomplementarydomain);then,tilejustificationisstraightforward.

Let us now return to formulae (3.10), (3.11) and assume that. condition (3.12) does not hold. This means

that we will not be able to associate a pure discrete dipole with the grid segment [b, c], because we will no

longer have tile t)roperty f_h) c ([b, e]) = -f_h)b ([b, c]). Instead, we can write

_ (h) _ V_h)f_h) ([b,c]) = _f_hl b ([b,c]) + h2
(3.18)

= --f_hi b([b,el) + p]c([b,c])

The term p[_([b,c]) in (3.18) accounts for the discrepancy between the first difference quotients of the

functions w (hI and v (hI along the grid segment [b,c]. This is analogous to the discontinuity of the first

derivative (with respect to x, see Figure 3.2) in tile continuous case. Recall, in the contimmus framework

(see Section 2) the discontinuity in the fllnetiol_l ['u]l" gave rise to the double layer, whereas the discontimlity

in the derivative [o,,1 gave rise to the single layer. Sinfilarlv in the discrete case. we can still associate a
toni F "

dipole qb(' = --2]'" f_ht b ([b, c]) with the segment [b, c] (cf. equation (3.13)), but because (3.12) does not hold

we will need to compensate for the discrepancy by adding the monopole term Ply.([b,c]) so that

b ([b, c]) 1 f_ _. 1f_h) =--_qbc and (h) ([b,c])=_qbc+pf,.([b,c]). (3.19)

These considerations easily generalize to the entire grid boundary ?. Namely, for every pair of nodes (7tl, w,)

such that nl E "7+ and n2 E 2- F1N,,,, i.e., for every grid segment with the endpoints on different sides of F,

we can introduce a discrete dipole with the moment (el. equation (3.15))

q,,,,_ =-2h. ([,_, ,_'-,l)=-2 "'_ _'"_ V,_,,,_.) (3.20)

and a discrete monopole with the intensity

1 [Vl:',),,2 (w) 2 ] (3.21)= - W;_, (_,/

The reconstruction formulae that generalize (3.19) then become (cf. formulae (3.16)):

1

Vnl E_'+ : f_h) n, = Z 21,'qn' tl'2_

n2C_- 7INn 1

nl C3+NNn2

(3.22)

We call the terms P,,2 of the type (3.21) grid monopoles because they are due to "discontinuity" of the

discrete derivative, i.e., discrepancy between the first difference quotients of v (hI and w Ih) from the two sides

of F, and they contribute toward the value of f_hl only at one node of each respective pair (nl, he), see

(3.22). We nmst mention though that the latter decision, namely, to attribute the monopole sources from

each appropriate grid segment only to the corresponding exterior endpoint (i.e., the endpoint n2 E ?'-), is, of

course, arbitrary. Instead, we could have attributed the necessary monopole correction (see formulae (3.18)

and (3.19)) to the interior endpoint only (i.e., to nl E "y+), or even distributed it in any proportion between

the two endpoints 1_1 and n2. Even though formally on the discrete level there is no clear advantage of
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introducing monopoles one way or another, we will see (discussion after tile proof of Lemma 3.3) that having

the monolmles introduced tile way we did it, i.e., only oil "/-, makes tile representation of a given v Ih) on

N+ in the tbrnl of a discrete single-layer potential niost convenient. V_> should also note that if we assunle

boundedness of the first derivatives of v(x) and w(x) up to F, and as such, boundedness of the corresponding

first difference quotients (for small h), we conclude that both p,,._ = (9(h i) and q,_,,,_ = O(h-l), whereas

the nionopole and dipole contributions to the actual grid density f_h) have different orders with respect to

the grid size. O(h -I ) and O(h-2), respectively, see (3.22).

Next, consider a special kind of w (h), namely, such that

- - _l'(h) V (h) (3.23)'7'71.> G : -'n2 = n2 •

It is easy to see from (3.21) that q,_,_,_ = 0, i.e., there will be no dipole contribution to the overall density

of the potential in this case. The only reniaining contribution will be monopole, and one can rewrite (3.22)

using (3.21) and (3.23) so that

f_h ) = 0,
1

fib .... 1= _=-h'

1

h

n3lt2 _ ,,,

.... _1_- \_+ }_N,,2 (3.24)

;'_l ia.,. ', '/ i_ Pn2 •

Ill E') +NNn2

To obtain the the expression for f_#') .... in (3.24), we have used the fact that Vm C _-: £!htwlhl[,, = 0,

which allowed us to equivalently replace the difference quotients of w (h) from (3.22) by the corresponding

ternis in (3.24). At the same time, this expression is, of course, an explicit formula for the application of the

operator L _h) of (3.1) to the combined fimction fi(m of (3.4b). This formula obviously does not contain 'w(t_1,

because h Ih) is obtained from u (h) by truncation, as before. There is a minor difference, however, compared

to the previously analyzed dipole case. Then, to obtain the expressions for dipole nlonlents (3.15) we did

it (hI inneed the boundary condition (3.14) that still involved wll+ ), even though f_h) does ,lot depend on _+

any ew_nt. Now. the boundary condition (3.23), which leads to monopoles p,,..>,,2 G ")'-, see (3.24), does

not contain the values u,(t_ ) either. As such, we call consider w Ih) only oil N-\"s + throughout the entire

argument when we summarize the construction of discrete monopoles in the following

D_;b'iNl'rlON 3.2. If the function _,th) is defined on N + so that L(t')v (t') = 0 on M+ , _(hl = e(h)iN+\__ '

and u ,(#'t - i?(#,) is defined on N- \').+ ,so that L(h)w Ih) = 0 on 1_- \?-, and if boundary condition.s (,7.24)

hold, then the correspondin 9 f_#') of (3.5) is called the density of the discrete single-layer potential, and

ezq_ression (3.6) defines the discrete "single-layer potential it.self.

Definition 3.2 is a natural finite-difference analogue to the notion of the continuous single-layer potential

introduced in Section 2. hideed, a pure continuous single-layer potential is defined by the discontinuity

in the derivative of the flmction to,,] but not in the function itself. Accordingly formula (3.21) showstoni I"

that the discrete monopole-type sources are driven by the discrepancies in the first difference quotients of

the grid finwtions v (h) and w (h) on different sides of the interface. Moreover, boundary condition (3.23)

that Definition 3.2 hinges upon is essentially a discrete Dirichlet boundary condition for the function w Ih).

It says that there is no discontinuity in the function itself in this case, whereas the discontinuity in the

derivative (more precisely, first difference quotients) is, generally speaking, allowed, and it drives the non-

trivial potential density. Finally, the ternl "grid monopoles" is characteristic because the sources P,_2 of

(3.24) are concentrated only on "y-, i.e., only on one layer of tile grid boundary _.
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LEMMA 3.3. Any v (t_) defined on N + such that L(h)v (ht = 0 on M+, where L (h) is the operator of (3.I)

with c < O, i.e, either a Yukawa 07" Laplace operator, can be represented in the form of a discrete single-layer

potential.

Proof. What we essentially need to show is that filr any v Ih_ that meets the requirements of the Lemma,

there will always be a function ugh) on N-\_:+ that solves the homogeneous equation L(h)w (h) = 0 on

M-\7-, and satisfies tile far-field boundary condition (3.2) and boundary conditions (3.23) on 7-- The

problem of finding the appropriate function ug h) on iN- \7 + can be classified as a discrete exterior problem

of the Dirichlet type, because boundary conditions (3.23) prescribe the actual values of the discrete function

w (h) on the boundary "y-. In this sense, this problem is analogous to the continuous t)roblem (2.14) that

needs to be solved in order to rel)resent a continuous v(x) on t_ in the form of a single:layer potential.

For the proof, we again employ a maximum principle argulnent, as we did when pr<)ving Lemma 3.2. In

this case, though, it is comt)letely straightforwar(t. The corresponding homogeneous problem

L(h)w (hI =0 on 1VII-\?-,

'u (1') 0.

ot)viousty has as many equations as it has unknowns, and its only solution is trivial, because otherwise we

would have had an interior-node positive maximum or negative minimum, which is not possible. Vl

Similarly to the previously analyzed double-layer case, for the Hehnholtz equation the solvability of the

foregoing discrete exterior Dirichlet problem for w (h) on N-\7+ needs to be assumed (this, again, means

that the complementary domain is not resonant). In this case we can clailn that a given v (h) on N+ can be

represented as a discrete single-layer potential.

Let us also emphasize that because we defined the discrete single layer so that the monopole sources

are concentrated only on "_-, the corresponding t)otential (3.6) with the density f_h) of (3.24) automatically

reconstructs the flmction v (h) on the entire grid N + so that L(h)v (h) = 0 on all of the MI+. As we will

see in Section 4, this makes the discrete single layer a borderline case of discrete volumetric controls that

are derived for noise cancellation in the finite-differeiwe framework. In contradistinetioi1 to that, t)reviously

(in the case of a double layer, as well as in all composition cases) the discrete surface potential would only

reconstruct 9 (t'} on N+ \7-, and the values v (h) I_- will have to be complemented afterwards.

To sumlnarize, we shall say that we have constructed discrete analogues of the continuous surface po-

tentials for second-order operators. Similarly to the contilmous case, the discrete potentials carl be classified

by the type of "discontinuity" of the grid flmction on the interface. The discrete potentials are driven by

the densities that can be represented as comt)inations of grid monopoles and dipoles. Again, similarly to

the continuous case, a given solution of the homogeneous finite-difference equation on the domain can be

represented as a discrete surface potential in a variety of forms, including a pure single-layer potential, a pure

double-layer potential, as well as combinations of tile two, see formulae (3.22). For the Helmholtz equation,

the aforementioned key result on representation of a given solution as either a single-layer potential or a

double-layer potential require that the complementary domain be non-resonant. It is obvious, however, that

resonances can always be avoided by changing the geometry of the complelnentary domain only.

4. Discussion on Possible Applications. Assume that we have a given field v generated by some

unknown sources located on _'_l, and we want to eliminate it on l-t by active means, i.e., by adding the

new source terms to the right-hand side of the overall governing equation so that their influence on t_ will

be exactly -v. As an important physical application in this context, one may think of active control of

monochromatic sound described by the Hehnholtz equation. In this ease, the waves generated by sources on
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_l should be treated as incoming with respect to the domain _l (this field solves the homogeneous Helmholtz

equation on Q), and the purpose of introducing tile active control system is to cancel these waves out. A

general solution to the noise control prot)lem ill t ernis of volumetric, rather than surface, control sources has

1)een constructed in [9]. It is given by

f((vol)
'ontrol -_ -- LW QI' (4.1)

where w is an auxiliary function that is supposed to satisfy only some relatively "loose" requirements, namely,

u, E U and w]r = Vlr, _'' o._,r = _-_7,,Ir _"here v is the field that we want to control. The justification for formula

(4.1) is rather straightforward. The field v to be controlled on _ can be annihilated by the surface potential

with the density -_b-;7,, or -_o,, Ir,w[r) T" which is the sa_m. The latter can |)e equivalently

rewritten on Q (using Green's formula) as a volume potential with the density given by (4.1):

=-.w + L GL.u,dy = - f grwdy + _ gI, wdy.,_, (4.2)

d''= - gLwdy = _J(-o,t_o_ u.
1

One can also show that by considering the entire variety of auxiliary functions w that satisfy the aforemen-

tioned requirements, we obtain all those and only those volumetric control sources that identically cancel

the unwanted noise v on the domain _'t..Moreover, the actual signal v that is needed to define the auxiliary
Ou

function w (through tile boundary values 3-_lv and 'vlr ) inay, in fact be "contaminated" in the sense that

it. may contain the comt)onent generated by the sources inside l) (if any). This coinponent is obviously a

solution to the homogeneous equation on ilL, and shall be treated as an outgoing wave with respect to the

domain l_t. In the framework of [9] we rather consider the sound generated inside _ as friendly_ i.e., we do

not want our control sources to have any effect on it. It turns out that in the presence of interior sound the

formula (4.1) for controls does not change at all, even though the actual boundary values for w do change.

The reason is that the outi)ut of controls f(vol)co=trol given by (4.1) on t_ is the same as the surface potential with

the density. - (T;i:,,]r,,WIr)°'"T, see (4.2); and the latter, as we know from the analysis of Section 2, reconstructs

on _ only tim incoming portion of the overall wavc field, while being completely insensitive (on Q) to any

outgoing component that may be present in thc boundary data.

In much the same spirit as the foregoing description of volumetric controls (see [9] for detail), Proposi-

tion 2.1 of Section 2 describes the entire variety of surface controls that cancel a given field on the domain

Q. In this sense, the considerations of Section 2 complenmnt those of [9]. Obviously, the monopole and

dipole surface sources described in Proposition 2.1 have to be taken with the minus sign for the purpose of

eliminating a given field v(x), x E _t. Namely,

i I=u_fl [0w Ov] 2_(i(F) V]l,6(F)), (4.3)
..... trol- [5- n r - on

where w = w(x) is an auxiliary fimction, x E Qt, w E U, Lw = 0. Similarly to formula (4.1), the set

of all appropriate surface controls, see (4.3), is parameterized by considering the entire variety of auxiliary

functions w on f_l. Moreover, by its very construction tile surface potential on l] is insensitive to any field

from the interior sources. In other words, if the actual outgoing waves are present they can be considered

as an addition to the function-parameter w, which has the meaning of an outgoing wax_e at any rate.
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In [10]westudydifferentoptinfizationformulationsandstrategiesforthecontrolsources(4.1)and(4.3).
Weemphasizethatanycontrol source fr(un this class guarantees the identical cancellation of unwanted noise

on the domain Q. Ttmrefore, unlike ill many approximate formulations (see. e.g., [8]), in which the extent

of noise reduction is a key optimization criterion, in the current exact fornmlation it will not be a part

of the function of merit. As such, we trove rather looked at the criteria that are based primarily on the

control sources themselves. For example, we have found that purely monopole surface controls from the

class (4.3) obtained with w of (2.14) appear globally optimal (i.e., anlong both surface (4.3) and volumetric

(4.1) controls) from the standpoint of nfinimizing the overall absolute strength, i.e., integral amplitude of

the volume velocity (see [8] for the definition), of all sources. Mathematically, this translates to optinlization

in the sense of L1. At the same time, this surface monopole solution appears to radiate zero acoustic power

(again, see [8] for the definition). There are other types of surface c(tntrol sources that radiate no power.

For example, the sources (4.3) that correspond to w - 0 radiate no power and also produce no reflection of

the incoming wave to the domain Q1. The latter circumstance, which is rather ot)vious in the framework of

the analysis of this paper, has also been mentioned in [8]. ()n the other hand, purely dipole surface controls

(4.3) obtained with w of (2.15) are known to reflect all of the inconfing wave back to the domain 1_1, see [8].

Among other confl)inations of type (4.3) one (:all, in fact, find those that would actually absorb the power of

the incoming wa_e, i.e., be "beneficial" as far as energy. _ Moreover, the extent of this power absorption (:all

basically be made as large as one would want. This st atenmnt, which may look counterintuitiv(' at a first

glan(:e, does not, of course, contradict tile energy conservation. The explanation is that the field from the

control sources (4.3) actually "loads" (see [8]) the original sources of sound h)cated on _1, i.e., make them

"push harder" against the medium and as such produce more energy, which is then partially consumed by

the control syste.in.

In practice, of course, no control system can be designed using genuine continuous elements, as required

by the previous analysis, e.g., continuous excitation (4.3) along the perimeter of tile protected region. Actual

technical devices, i.e., loudspeakers, that on(' will need in order to build such a system, have finite (often.

small) size and (:all tytfically be assigned a point-wise location in space. As such, it. is convenient to consider

a discrete (finite-difference) formulation of the noise control problem from the very beginning.

As shown in [10] (see also previous work [13 16]) a general sohltion for finite-difference volumetric control

sources that cancel the unwanted noise on the grid subdonlain N+ is given by (of. fornmla (4.1})

f(h,voll = _L(hlwlhl j__ (4.4)ontrol

where w (hl is an auxiliary function that is defined on N- and is supposed to satisfy tile selected far-field

boundary condition (e.g., (3.2)) and the following boundary condition on 7: u'(hl[_ = v(hl[=, where v (hI

is tile discrete field that we want to control. Other than that tile function w (hi is arbitrary and as such,

parameterizes the entire variety of appropriate volumetric control sources. The justification for formula

(4.4) is based on the theory of generalized difference potentials, see [5, 6]. Without elaborating on this issue

here, we simply mention that once the auxiliary flmction w (h! meets the aforementioned requirclnents, the

function t'2(h} ¢(h, vol) will always coincide with -v (h) on N +, and as such, provide an ideal cancellation of
J control

the unwanted signal. Moreover similarly to the continuous case, the actual boundary data v thl]_ that we

need to define w (h) may actually contain a coInponent due to the interior (i.e., outgoing) sound, if there are

acoustic sources on M +. In this case, fornmla (4.4) does not change, and the resulting control sources will

4In the control theory such systems are said to possess the property of passivity, and the',' are known to be less likely to

misbehave if the operational conditions appear to be out of range.
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still be sensitive to the incoming component of the overall field only. This is clear because if we add to w (h)

f(h,,'ol) of (4.4) wilt not beany solution of the homogeneous equation defined oil N-, the control sources ,'ontrol

affected.

The discrete single-layer potential with the density (3.24) turns out to be a limiting, or borderline, (:as(, of

the general solution (4.4). Indeed, let us define the flmction w (h) required by (4.4) as follows: u, (t') ]_ = v (h) I_,

where v Ih) ]_ is given, and L(h)w (h) = 0 on NI-\p-. In other words, w (h) coincides with the given data on

the grid boundary _ an(l provides a solution to the homogeneous equation on the rest of the domain. This

is obviously equivalent to solving the Dirichlet problem for w (h) on N- \_/+ with I)oundary conditions (3.23),

and then complementing u,(t+) = v!J+). Having done that, we will obviously recover from (4.4)the same single

layer as (3.24), only with the opposite sign for cancellation.

In contradistinction to that, the discrete double-layer potential with the density (3.16), as well as any of

the combination type discrete surface potentials with the density (3.22), is not a part of the general solution

(4.4). It rather complements the general solution (4.4), in nmch the same way as surface control sources

(4.3) complemented the volumetric ones (4.1) in the continuous framework. The formula for discrete surfa('e

controls is obtained by taking (3.22) with the Opposite sign

V 'nl E _/+
f(h, surf) tel 1control ---- Z 2hW" q"' "_'

,q2 E_ - CIN,_ 1

f((h,surf) n" [ 1 ]-o,,,ro,_: Z -- ,
"_11 C=__,+ CINn, 2

Vn2 6 3-

(4.5)

where tim monot)oles and dipoles are defined by (3.21) and (3.20), respectively, and dipoles are assumed not

to be identically equal to zero, otherwise (4.5) will fall into the category (4.4). As one can easily conclude

fi't>m the analysis of Section 3, discrete surface controls (4.5) are also insensitive to the outgoing sound; given

the actual incoming field v (h) that we want to control, adding an outgoing component will simply alter the

function-parameter w (h) .

By comparing formulae (4.4) and (4.5) one (:an conclude that from the standpoint of derivation the key

distinction between the volumetric and surface control sources is rather formal: In (4.4) we do not allow

any control sources on M+ , whereas in (4.5) we do allow the control sources on the interior layer of the grid

boundary ")+ and as such enlarge the overall family of the appropriate control sources. In pra(:tice, however,

the benefit fi'om introducing dipoles on 2, may be far more profound. It turns out that in many cases the

engineering implementation of monopole sources is more difficult than that of dipole sources. As such, the

discrete dipoles q,_,,: may be introduced into a practical design as actual dipoles (oscillating double-sided

membranes) located, e.g., at the centerpoints of the corresponding segments.

Following the continuous case, we have also considered in [10] several optimizatioll formulations fi)r

the discrete control sources. Clearly, the type of optinfization problem that Inost easily lends itself to the

numerical solution is minimization of the L., norm of the control sources (4.4). However, this optimization

criterion lacks clear physical interpretation. As such, other criteria need to be employed. For example,

similarly to the continuous case we have found that the pm'e single layer on 7- appears globally optimal

(among all solutions (4.4)) in the sense of L1, which corresponds to miniInizing the overall absolute strength

of all sources. We have also found that the surface control sources (4.5) obtained for w (h) - 0 possess the

nonreflecting property, i.e., they cancel out the unwanted noise on the protected region and at the same

time (to not alter the acoustic field on the complementary (tomain. This prot)erty on the discrete level

follows immediately fi'om the construction of the surface potential, in Inuch the same way as it does on the
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continuouslevel.Forfurtherdetailonoptimizationof controlsourcesfor activecancellationof soundwe
referthereaderto ourpaper[10].

Thelastissuethatyetremainsto beaddressedis theconnectiont)etweenthecontinuousanddiscrete
formulationsofthenoisecontrolproblem.Inotherwords,if wedesignacontrolsystemin thefinite-difference
framework,i.e.,constructadiscretecollectionof noise-cancellingdevicesaccordingto (4.5),(3.21),(3.20),
whatkindof performanceshallweexpectasfaraseliminatingtheunwantednoisecontinuouslythroughout
the protectedregion.First of all, to attempta constructionof the discretecontrol system, we need to

require some standard properties from tile discretization that we are using. Namely, the grid has to be

sufficiently fine so that to well resolve the waves of tile length )_ = 27r/k (recall, the operator L of (2.2) for

c = k: becomes the Hehnholtz operator so tilat equation Lu = f governs the propagation of waves with the

length A = 2rr/k). Moreover, the finite-difference scheme has to be consistent and stable (diseretization (3.1)

obviously satisfies the latter criteria). With these requirements met, the general theory of [5 7] basically

says that the discrete potential v (hi defined on N+ will approximate the continuous potential v(x) defined

on _, provided that the discrete t)oundary data v_t') apt)roximate the continuous I)oundarv. data _(On°C,l') T ill

some special sense. Namely, once the continuous function and first-order normal deriwltive are known at.

the boundary F, normal derivatives of higher orders can be obtained via the differential equation itself, and

the uear-boundary values v(_hl can be calculated using Taylor's expansion; the order of accuracy of the latter

calculation with respect to h has to be at least as high as the order of accuracy of the interior scheme. In

this ease, the quality of the approximation, i.e., the rate of convergence of the discrete t)otential with rest)ect

to tile grid size b, will I)e the same as prescribed by tile finite-difference scheme itself; this rate is O(h 2) for

the parti(:ular example (3.1) that we have considered in Section 3. In other words, when designing an active

control system following the finite-difference apt)roach of Section 3, one can expect to have the actual noise

cancellation in tile same at)l)roximate sense as the solution of the finite-difference equation approximates the

corresponding solution of the original differential equation.
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